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Abstract

Computer simulation is the only method available for evaluating vaccination policy for rare diseases or emergency
use of new vaccines. The most realistic simulation of vaccination policy is agent-based simulation (ABS) in which
agents have similar socio-demographic characteristics to a population of interest. Currently, analysts use published
information about vaccine efficacy (VE) as the probability that a vaccinated agent develops immunity; however, VE
trials typically report only a single overall VE, or VE conditioned on one covariate (e.g., age). Thus, ABS’s potential
to realistically simulate the effects of co-existing diseases, gender, and other characteristics of a population is under-
used. We developed a Bayesian network (BN) model as a compact representation of a VE trial dataset for use in ABS
of vaccination policy. We compared BN-based VEs to the VEs estimated directly from the dataset. Our evaluation
results suggest that VE trials should release statistical models of their datasets for use in ABS of vaccination policy.

1 Introduction

Computer simulation is an important method that allows policy makers to examine the effectiveness of vaccination
strategies in a virtual environment before applying them to a real population1. It is really the only method available
for rare diseases (e.g., study of smallpox vaccination2), or emergency use of new vaccines (e.g., study of vaccination
policy for Ebola and Zika epidemics3–5).

Agent-based simulation (ABS) is the most realistic method for computer simulation of vaccination policy. Briefly,
when using an ABS to analyze a vaccination policy P, analysts first create a population of agents whose socio-
demographic and behavioral characteristics are similar to a population of interest. They then program the simulator
to emulate policy P and emergence of an epidemic. In particular, analysts use published data about vaccine efficacy
(VE) to determine the probability of disease transmission to a vaccinated agent.

There is usually limited information about VE available to ABSs of vaccination policy since VE trials typically report
only a single overall VE, or VE conditioned on only one covariate (e.g., age)6–8. Additionally, while it is possible to
recover other conditional VEs from VE trial datasets, these datasets are not released to the public domain and they
are difficult to obtain even under restrictions. Thus, ABSs of vaccination policy are not able to simulate the effects of
co-existing diseases, medications, gender, and other socio-demographic characteristics of a population.

Therefore, our objective is to improve the information available about VE. In particular, we developed and evaluated
a Bayesian network (BN) model as a compact representation of a VE trial dataset for use in an ABS of vaccination
policy. A BN is a probabilistic model that encodes a joint probability distribution over all dataset variables. VE
conditioned on any set of covariates can be estimated from a BN model of a VE trial dataset. We discuss the details of
estimating VE from a BN model in Section 3.

The VE trial dataset that we used was collected in a study of a trivalent inactivated influenza vaccine (TIV), manu-
factured by GlaxoSmithKline (GSK) Biologicals, during the 2006–2007 influenza season in the Czech Republic and
Finland8. We used two score-based BN learning algorithms in combination with multiple score functions to develop
several BN models of the VE trial dataset, in addition to a naı̈ve Bayes model as the baseline model. We evaluated the
models in 10-fold cross validations to find the model that fits the dataset the best. We compared the VEs estimated
from the best BN model to the VEs that we directly estimated from the dataset. Our results suggest that VE trials
consider releasing a BN model of their datasets which contains significantly more information about VE compared to
the tables they report in their publications.



2 Related Work

Previous studies have addressed the problem that a single VE may not apply to all individuals9–15. The issue is usu-
ally referred to as heterogeneity in VE and has been investigated since 1915 when Greenwood and Yule9 noticed the
problem. Longini et al.13 categorized the approaches to modeling the heterogeneity in VE into two groups: (1) by
using stratification10, 12, and (2) by allowing the susceptibility in vaccinated persons to follow a probability distribu-
tion11, 13, 16. In the stratification approach, vaccinated individuals are stratified into a number of mutually exclusive
groups and VE is estimated for each group. The number of strata in this approach is usually determined manually
and depends on whether the heterogeneity in VE originates from the host characteristics or is vaccine-related12. In
the second approach, the vaccine effect on individuals follows a probability distribution. For example, Longini et al.13

defined a parameter, α, as a fraction of the vaccinated persons who may develop complete protection. The remaining
fraction, 1 − α, may receive only partial protection. Their objective was to estimate α and the parameters for the
distribution of individuals with partial protection from trial or observational data. To model VE, they used a frailty
mixture model which is a class of survival models that allow some vaccinated individuals to be more susceptible than
other vaccinees.

Moreover, in a recent study, Mehtälä et al.15 investigated how to estimate the efficacy of a vaccine with heterogeneous
protection in a SIS (Susceptible-Infected-Susceptible) model. They modeled VE using three parameters: the propor-
tion of vaccinated completely protected from infection, the relative attack rates in acquisition phase, and the relative
attack rates in clearance phase, for a vaccinated person not completely protected as compared to an unvaccinated
individual.

In this paper we propose a different approach for modeling the vaccine effect in the presence of heterogeneity, which
to our knowledge has not been tried previously. We use machine-learning algorithms to fit a joint probability distri-
bution over all variables in a vaccination trial dataset including socio-demographic and disease characteristics, and
vaccination-related covariates. We expect that the machine-learning algorithms will automatically capture the host or
vaccine-related heterogeneity in the vaccine effect, as long as the relevant covariates are measured in the vaccination
trial.

3 Method

We propose a machine-learning based method to fit a joint probability distribution over variables in a VE trial dataset
and then use the distribution to estimate VE conditioned on any set of covariates. In the following sections, we first
describe BNs and the learning algorithms we use. Then, we explain how to estimate VE from a BN model of a VE
trial dataset.

3.1 Bayesian Networks (BN)

A BN over a set of random variables V is a pair BN = (G,P ), where G is a directed acyclic graph (DAG) and
P is a joint probability distribution of V . Each node in the DAG is assigned a conditional probability distribution
as a function of the node’s parents. Nodes with no parents have a marginal probability distribution. Arcs represent
dependency relationships between variable pairs17. Learning a BN model of a dataset includes two steps: (1) DAG
construction, in which a BN structure-learning algorithm is used to find a DAG from data, and (2) parameter estimation,
which is estimating the probability distribution of nodes in the DAG.

We used two score-based structure-learning methods: hill-climbing (HC) with random restart and tabu search. These
algorithms start from an initial network structure (e.g., an empty graph) and add, delete, and reverse arcs until a score
function is no longer improved. Tabu search algorithm maintains a list of recent operations (i.e., tabu list) to avoid
repeating the most recent actions and becoming stuck in a suboptimal solution18. We tested several score functions
that are common in the literature: Bayesian information criterion (BIC)19, Bayesian Dirichlet equivalence uniform
(BDeu)17, and K220.

Once a DAG is learned by a BN structure-learning algorithm, a parameter estimation method is used to learn the
conditional probability distributions of the nodes given the DAG and data. We use the maximum a posteriori (MAP)
parameter estimation method in our analysis.



After learning a BN model from data, i.e., learning the structure and estimating the parameters, we use inference
algorithms to obtain the probability of an event of interest (e.g., disease contraction) conditioned on a set of evidence
(e.g., vaccinated and female). This process is called inference or probabilistic reasoning. BN inference algorithms are
categorized into exact and approximate inference algorithms21. Exact inference algorithms use Bayes theorem and
Markov condition to derive exact values of conditional probabilities and are limited to small BNs. Approximate infer-
ence algorithms use Monte Carlo sampling to estimate conditional probabilities from a large set of dataset instances
generated from the BN. These algorithms perform better on large BNs. In our experiments we use logic sampling21

which is an approximate inference algorithm.

3.2 Estimate VE from a BN Model

In this section, we explain how to estimate VE from a joint probability distribution that is obtained by a BN learning
algorithm. In particular, we formulate VE as a function of two conditional probabilities that are inferred from a joint
probability distribution.

VE is measured as the proportional reduction in disease incidence in vaccinated group compared to unvaccinated
group22. When we do not condition on any other covariates, e.g., age, gender, etc., VE is referred to as Overall VE
and is calculated using the following equation:

V E =
ARU −ARV

ARU
= 1− ARV

ARU
(1)

where ARV and ARU are attack rates in the vaccinated and unvaccinated groups, respectively.

According to the relative frequency definition of probability23, ARV can be defined as the probability of disease
incidence in vaccinees, i.e., Pr(disease|vaccinated), and similarly, we can formulate ARU as the probability of
contacting the disease in non-vaccinees, i.e., Pr(disease|unvaccinated). Therefore, by replacing attack rates with
probabilities in Equation 1, we can re-write VE as a function of two conditional probabilities:

V E = 1− Pr(disease|vaccinated)
Pr(disease|unvaccinated)

(2)

We can extend Equation 2 to obtain VE conditioned on a set of covariates (e.g., age, gender). LetX = {X1, X2, ..., Xn}
be a set of covariates in a VE trial dataset, which are initialized with values x = {x1, x2, ..., xn}. VE conditioned on
X = x is formulated as follows:

[V E|X = x] = 1− Pr(disease|vaccinated,X = x)

Pr(disease|unvaccinated,X = x)
(3)

4 Dataset Description

The dataset that we used to develop and evaluate BN models was acquired in a randomized, double-blind, placebo-
controlled study of a trivalent inactivated split-virus influenza vaccine (TIV) manufactured by GlaxoSmithKline (GSK)
Biologicals8. The study was conducted during the 2006−2007 influenza season in the Czech Republic and Finland.
The primary objective of the study was to assess the efficacy of the TIV in the prevention of culture-confirmed influenza
due to strains antigenically matched to the vaccine.

The study subjects were 7652 healthy adults between 18 and 64 years old. 5103 of the subjects were vaccinated
with 1 dose of TIV and the remaining 2549 received 1 dose of placebo in their first visit. Table 1 demonstrates the
demographics of vaccine and placebo groups. Due to the randomization in group assignments, the distribution of
demographic characteristics is similar in both groups.

The dataset contains 38 tables which fall into two categories of administrative (30 tables) and analysis (8 tables).
Administrative tables are populated with the study meta-data, including the list of codes for activities and events,
information on dataset fields, and administrative details (e.g., consent forms, eligibility and elimination codes, protocol



violations). The analysis tables contain the information related to vaccination, lab results, demographic characteristics,
and medical conditions (Table 2).

We used only variables from six analysis tables. We excluded the two remaining analysis tables, influenza-like-illness
(ILI) episodes and serology information, for two reasons: (1) ILI variables, e.g., symptoms and medications during ILI
episodes, were post-incidence events that could not influence the VE, and (2) serology tests were performed for only
a subset of participants in the study. The outcome variable that we used for model evaluations and VE estimations is
influenza due to vaccine antigenically matched strains, which is the same outcome variable that the VE trial used for
their primary analysis8.

For our analysis we created a single table with 133 variables including demographics, medical conditions, concomi-
tant vaccinations, non-ILI-episode medications, vaccine-related variables, and the outcome variable (influenza due to
vaccine antigenically matched strains). All variables were either binary or categorical with a few categories except for
Age which had integer values between 18 and 64. We discretized the Age variable to reduce its number of possible
values. Specifically, at each iteration of a 10-fold cross-validation we applied a supervised discretization method to
categorize the Age variable into a few bins.

Table 1: Demographic characteristics of the VE trial subjects. Second and third columns list the number and percent-
age of each demographic characteristic within vaccine and placebo groups, respectively. For Age, the average age and
the range for each group is listed.

Characteristic Vaccine (n=5103) Placebo (n=2549)
Age, mean years (range) 39.94 (18-64) 39.74 (18-64)
Sex, no. (%)

Female 3069 (60.14) 1542 (60.49)
Race, no. (%)

African Heritage or African American 1 (0.02) 0 (0)
Asian - East Asian 1 (0.02) 0 (0)
White - Arabic or North African 3 (0.06) 1 (0.02)
White - Caucasian or European 5097 (99.88) 2547 (99.92)
Other 1 (0.02) 1 (0.04)

Ethnicity, no. (%)
American Hispanic or Latino 5 (0.10) 1 (0.04)
Not American Hispanic or Latino 5098 (99.90) 2548 (99.96)

Country, no. (%)
Czech Republic 2664 (52.20) 1332 (52.26)
Finland 2439 (47.80) 1217 (47.74)

Table 2: List of 8 analysis tables and their variables. The VE trial dataset contained 38 tables including 30 adminis-
trative and 8 analysis tables. We used only the analysis tables to create a single table with 133 variables.

Table name Variable names (possible values)
Demographics age, gender, race, ethnicity, country, vaccination center
Medical condition diagnosis, status (past, current, both)
Concomitant vaccination vaccine name, code, vaccination date
Medication name, code, start date, end date, daily dose
Vaccine vaccine (Fluarix, placebo), vaccine vial-type (original, replacement),

vaccination route, vaccine dose
Lab results influenza type (A, B), virus strain (H1N1, H3N2, B),

influenza due to vaccine antigenically matched strains (positive, negative),
test type (HAI, QPCR)

Influenza-Like Illness (ILI) episodes ILI number, start date, end date, symptoms, medications
Serology results seropositivity status
(for a subset of 504 subjects)



4.1 Bivariate Analysis of Covariates

We explored the statistical dependencies to the outcome variable using bivariate logistic regressions. In particular, for
each variable Xi in the dataset, we fit a logistic regression model with the outcome as the dependent variable and Xi

as the independent variable. Only a few variables demonstrated significant correlation to the outcome variable (i.e.,
p-value < 0.05) (Table 3). These variables are likely to have an arc to the outcome node in the BN structure of the
dataset. Most of the correlated variables are vaccine-related (i.e., vaccine, vaccine lot, vaccine vial type, and ATP
vaccination).

Table 3: List of variables with significant association with the outcome, influenza due to antigenically matched strains.
For each variable in the dataset, we used a bivariate logistic regression with the outcome variable as the dependent
variable. Here we list variables with coefficient p-value < 0.05 in their corresponding logistic regression model.

Variable no. of influenza cases Estimated coefficient Coefficient p-value
within each group (CI. 95%)

(out of 124 total cases)
age a -0.02 (-0.03 -0.01) <0.001
country b 81 0.55 (0.18 0.93) 0.003
vaccine c 49 -1.14 (-1.5 -0.78) <0.001
vaccine lot d

lot1 25 -1.12 (-1.59 -0.67) <0.001
lot2 24 -1.16 (-1.64 -0.71) <0.001

vaccine vial type e 122 -2.32 (-3.64 -0.46) 0.002
ATP vaccination f 2 1.63 (-0.2 2.86) 0.027

aage was analyzed as a continuous variable.
bvariable values are: 0=Finland (FI), 1=Czech Republic (CZ)
cvariable values are: 0=placebo, 1=Flaurix vaccine
dvariable values are: ”placebo”, ”lot1”, ”lot2”
evariable values are: 0= replacement vaccine (due to unusability of study vaccine), 1=study vaccine
fvariable values are: 0= vaccine not administered According To Protocol (ATP), i.e., vaccine received in the dominant arm or a replacement vial

was administered, 1=vaccine administered ATP

5 Evaluation Method
5.1 Model Evaluation

To find the best BN model of the dataset, we performed model selection among several BN models. In particular,
we evaluated the goodness of fit and the probability errors of the models in 10-fold cross validations. The following
sections introduce the evaluation metrics.

5.1.1 Goodness of Fit Test

We evaluated the goodness of fit of BN models by two statistical tests which we call global test and local test24. The
global test examines the null hypothesis that the observed data instances are occurring with the probabilities stated by
the model. We constructed a test statistic using a logarithmic score as follows. Let Y be a binary outcome variable, yi
be the observed value of Yi for instance i, and pi(Yi = yi) be the probability of Yi = yi according to the model. Then,
a logarithmic score of instance i is:

Si = − log pi(Yi = yi).

For N data instances the cumulative logarithmic score S would be the sum of the logarithmic scores overN instances,
i.e.,

S =

N∑
i=1

Si = −log
N∏
i=1

pi(Yi = yi). (4)



We can use S to construct a standardized test statistic Z:

Z =
S −

∑N
i=1Ei√∑N

i=1 Vi

, (5)

where

Ei = −
∑

k∈{0,1}

pi(Yi = k) log pi(Yi = k), (6)

Vi =
∑

k∈{0,1}

pi(Yi = k) log2 pi(Yi = k)− E2
i . (7)

For large N , Z is approximately distributed as a standard normal under the null hypothesis that the model fits to the
data25. Therefore, we can calculate the probability of seeing values as extreme or more extreme than Z as a measure
of the fitness of the model.

The local goodness of fit test evaluates the conditional probability distribution of the outcome node in a BN model.
Let Y be a binary outcome variable, Yi be the outcome variable for instance i in the data, yi be the observed value of
Yi, and Xpai

= ρ be the instantiation of parents of node Y in the data instance i. The local score of the outcome node
in a BN model is computed via Equation 8,

LSi = − log pi(Yi = yi|Xpai
= ρ) (8)

where pi(Yi = yi|Xpai
= ρ) is the probability of Yi = yi given the configuration of parents of Y (Xpai

= ρ). We can
compute pi directly from the conditional probability distribution of Y learned in the parameter learning step without
doing inference. The standardized local score is obtained similar to the global test by use of Equations 4, 6, 7, and 5,
respectively.

5.1.2 Outcome Probability Error

We compare the BN models in 10-fold cross validations with respect to their accuracy in estimating the probability of
the outcome. We use mean squared error (MSE) and two probability calibration error metrics26. MSE is the average
of squared differences between the estimated probabilities and the corresponding value of the outcome variable (i.e.,
contracting influenza due to vaccine antigenically matched strains ∈ {0, 1}), and is calculated using the following
formula:

MSE =
1

N

N∑
i=1

(ei − yi)2 (9)

where ei is the estimated probability of outcome for data instance i, yi is the actual value of outcome for data instance
i, and N is the total data instances.

Probability calibration error is the discrepancy between probabilities inferred from a model and probabilities obtained
from the dataset. To compute this error, we sort the estimated probabilities in an increasing order and divide them into k
number of bins. The model is perfectly calibrated if the mean of estimated probabilities are equal to the actual fraction
of positive outcomes in each bin. The difference between the mean of probabilities and the fraction of positives in
each bin is the base for probability calibration error metrics. We used maximum calibration error (MCE) and expected
calibration error (ECE) metrics. MCE (Equation 11) measures the maximum calibration error over all bins, and ECE
(Equation 10) calculates the average calibration error over all bins:

ECE =

k∑
i=1

P (i) · |oi − ei| (10)

MCE =
k

max
i=1

(|oi − ei|) (11)

where k is the number of bins, oi is the fraction of observed positive outcomes in bin i, and ei is the mean of the
estimated probabilities in bin i.



5.2 Evaluating VEs estimated from a BN Model

We evaluate the VEs estimated from the BN model by comparing them to the same VEs acquired directly from the
dataset. To estimate a VE from the BN model, we obtain two conditional probabilities and use Equation 3 to calculate
the VE. For example, to estimate VE for females, two conditional probabilities are inferred from the BN model:
the probability of disease contraction given vaccinated and being female, Pr(disease|vaccinated, female), and the
probability of disease contraction given unvaccinated and being female, Pr(disease|unvaccinated, female). Each
VE estimation is repeated 100 times. The average and standard deviation (SD) of 100 VEs is used as the estimate and
the uncertainty interval, respectively. For estimating a VE directly from the dataset, we use Risk ratio test and report
a 95% confidence interval. P-values are calculated using two-sided Fisher’s exact test.

6 Evaluation Results
6.1 Model Evaluation Result

We performed two goodness of fit tests followed by probability error measurements. All evaluations were implemented
in a 10-fold cross validation. Table 4 shows the result of goodness of fit tests for different BN models and naı̈ve
Bayes. According to the global test there is significant evidence that the naı̈ve Bayes model does not fit to the dataset.
However, there is no evidence that BN models misfit the dataset. The local test demonstrates that there is no significant
disagreement between the conditional probability distribution of the outcome node and the observed distribution in the
dataset. We did not repeat the local test for naı̈ve Bayes model as its overall fitness was already rejected by the global
test.

Table 5 demonstrates the outcome probability error measures computed in a 10-fold cross-validation. mean square
error (MSE), maximum calibration error (MCE), and expected calibration error (ECE) was calculated based on the
probability of the outcome in each test instance. All BN models have low calibration errors compared to the naı̈ve
Bayes model. MSE is similar for all models.

Table 4: Goodness of fit test. We performed two tests to evaluate the models’ goodness of fit in 10-fold cross
validations. In the global test, we tested the null hypothesis that the model fits to the data. The local test evaluates
the null hypothesis that the probability distribution learned for the outcome variable fits to the data. None of the BN
models was rejected according to the p-values, except for the baseline model (naı̈ve Bayes). We did not perform the
local test for the naı̈ve Bayes model.

Algorithm Score function Global score P-value Local score P-value
Tabu BIC -0.31 0.38 -0.09 0.22
Tabu K2 0.16 0.44 0.06 0.22
Tabu BDeu 0.35 0.36 0.12 0.2
HC BIC -0.31 0.38 -0.09 0.22
HC K2 0.16 0.44 0.06 0.22
HC BDeu 0.35 0.36 0.12 0.2

Naı̈ve Bayes - 13.1 <.001 - -

Table 5: Probability error measures via 10-fold cross validation. For each model, mean square error (MSE), maximum
calibration error (MCE), and expected calibration error (ECE) computed for the outcome variable.

Algorithm Score function MSE MCE ECE
Tabu BIC 0.126 0.009 0.003
Tabu K2 0.127 0.008 0.003
Tabu BDeu 0.127 0.010 0.005
HC BIC 0.126 0.009 0.003
HC K2 0.127 0.008 0.003
HC BDeu 0.127 0.010 0.005

Naı̈ve Bayes - 0.141 0.072 0.015



6.1.1 Final BN Model

All BN learning algorithms performed equally well (except for naı̈ve Bayes) according to the model evaluations. We
decided to continue the analysis with the tabu search algorithm and BDeu score function. We used a model averaging
technique to build the final BN model27, 28. In particular, we trained 100 BN models over 100 bootstrap samples of
the dataset. Then, we built a single BN model from the 100 BNs by selecting the arcs with proportional frequency
of greater that or equal to 0.5. Since the resulted BN’s structure was too large to fit in here, Figure 1 illustrates a
sub-graph of the structure which includes the outcome node (influenza due to antigenically matched strains) and its
first and second level neighbors.

Figure 1: A sub-graph of the average BN structure learned by the tabu search algorithm. 100 instances of BN models
learned from 100 bootstrap samples of the data. An average BN model was built from arcs with proportional frequency
≥ 0.5. The illustrated sub-graph includes the outcome variable (influenza due to antigenically matched strains) and its
first and second level adjacent variables. Three variables (age, vaccine, vaccine vial type) form the Markov blanket of
the outcome variable. The outcome variable is independent of other variables given its Markov blanket21.
* symbol in the figure indicates a diagnosis variable.

6.2 Estimate VE from the BN Model

We estimated a number of VEs from both the final BN model and the dataset. Table 6 compares VEs estimated from
the BN model to VEs directly estimated from the dataset. VEs obtained from the two approaches are the same or very
close to each other. The uncertainty intervals for the BN-based estimates are also relatively similar to the confidence
intervals of the direct estimates, i.e., when the confidence intervals become wider, the uncertainty intervals follow the
same pattern (see the last row in Table 6).

7 Discussion and Conclusion

We developed and evaluated BN models as more complete representations of VE trial datasets compared to tables in
the publications reported by VE trials. We performed model evaluations using the goodness of fit tests and probability
error metrics to select the best BN model. We compared the VEs estimated from the BN model to the VEs estimated
directly from the dataset. The results were promising as the BN-based estimates were very similar to VEs that we
obtained directly from the dataset (Table 6).



Table 6: Comparing VE estimations from the selected BN model to the VEs estimated directly from the dataset.
For VE estimated from the BN model, we estimated each VE 100 times using logic sampling inference algorithm
and Equation 3. The average and standard deviation (SD) of 100 VEs used as the VE estimate and its uncertainty
interval. For VE estimated from data, risk ratio test was used to obtain the VE estimates and 95% confidence
intervals. P-values calculated by Fisher’s exact test.

VE estimated from the BN model VE estimated from data
Condition VE [VE−2 ∗ SD, VE+2 ∗ SD] VE 95% conf. interval p-value
Overall 0.67 [0.59, 0.75] 0.67 [0.53, 0.77] < .001
Female 0.67 [0.57, 0.77] 0.67 [0.48, 0.79] < .001
Male 0.66 [0.52, 0.80] 0.68 [0.41, 0.83] < .001
AGE ≤ 45 0.72 [0.65, 0.80] 0.69 [0.45, 0.83] < .001
AGE > 45 0.46 [0.17, 0.74] 0.47 [0.13, 0.76] 0.15

Although we did not validate our results by reproducing them on other VE trial datasets, we expect that our proposed
approach will perform similarly well; this is mainly because the machine learning algorithm could find the underlying
statistical dependencies despite the little evidence in the data (only 1.6% influenza attack rate). We expect the proposed
method to perform well on the datasets with higher attack rates. In addition to having a low attack rate, the dataset
did not include children and very elderly subjects. This might be a reason for low Influenza incidents in the study as
children and old population are the most vulnerable to influenza. The BN model of such datasets may not be usable in
ABSs of vaccination policy since these simulations usually include agents from all age ranges.

The significance of this research is that groups that conduct VE trials now have a method to release a statistical
model of their data from which vaccination policy makers can obtain VEs conditioned on any set of individuals’
characteristics without the need to access the study dataset. Therefore, an ABS of vaccination policy would be able to
simulate the effects of a vaccine in presence of all characteristics of a population. We expect that an improvement in
information about VE needed for vaccination policy analysis will lead to more effective use of vaccines, and ultimately
improvements in health.

In the future, we will use an ABS of vaccination policy to compare the new representation of VE trial datasets with
the traditional method (using tables from publications). In particular, we will examine how the the use of a statistical
model of the VE trial dataset changes the results of an ABS of vaccination policy that uses VEs from tables in the
study publication.
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15. Mehtälä J, Dagan R, Auranen K. Estimation and interpretation of heterogeneous vaccine efficacy against recurrent infections.
Biometrics. 2016;72(3):976–985.

16. Struchiner CJ, Brunet RC, Halloran ME, Massad E, Azevedo-neto RS. On the use of state-space models for the evaluation of
health interventions. Journal of Biological Systems. 1995;3(03):851–865.

17. Heckerman D. A tutorial on learning with Bayesian networks. In: Learning in graphical models. Springer; 1998. p. 301–354.

18. Bouckaert RR. Bayesian belief networks: from construction to inference; 2001.

19. Schwarz G, et al. Estimating the dimension of a model. The annals of statistics. 1978;6(2):461–464.

20. Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine learning.
1992;9(4):309–347.

21. Koller D, Friedman N. Probabilistic graphical models: principles and techniques. MIT press; 2009.

22. Orenstein WA, Bernier RH, Dondero TJ, Hinman AR, Marks JS, Bart KJ, et al. Field evaluation of vaccine efficacy. Bulletin
of the World Health Organization. 1985;63(6):1055.

23. Papoulis A, Pillai SU. Probability, random variables, and stochastic processes. Tata McGraw-Hill Education; 2002.

24. Cowell RG, Lauritzen SL, David AP, Spiegelhalter DJ. Probabilistic networks and expert systems. 1st ed. Nair V, Lawless J,
Jordan M, editors. Secaucus, NJ, USA: Springer-Verlag New York, Inc.; 1999.

25. Seillier-Moiseiwitsch F, Dawid A. On testing the validity of sequential probability forecasts. Journal of the American Statistical
Association. 1993;88(421):355–359.

26. Naeini MP, Cooper GF, Hauskrecht M. Obtaining well calibrated probabilities using Bayesian binning. In: AAAI; 2015. p.
2901–2907.

27. Friedman N, Goldszmidt M, Wyner A. Data analysis with Bayesian networks: A bootstrap approach. In: Proceedings of the
Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.; 1999. p. 196–205.
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