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Medical errors remain a significant problem in healthcare. This paper investigates a data-driven outlier-
based monitoring and alerting framework that uses data in the Electronic Medical Records (EMRs) repos-
itories of past patient cases to identify any unusual clinical actions in the EMR of a current patient. Our
conjecture is that these unusual clinical actions correspond to medical errors often enough to justify their
detection and alerting. Our approach works by using EMR repositories to learn statistical models that
relate patient states to patient-management actions. We evaluated this approach on the EMR data for
24,658 intensive care unit (ICU) patient cases. A total of 16,500 cases were used to train statistical models
for ordering medications and laboratory tests given the patient state summarizing the patient’s clinical
history. The models were applied to a separate test set of 8158 ICU patient cases and used to generate
alerts. A subset of 240 alerts generated by the models were evaluated and assessed by eighteen ICU clin-
icians. The overall true positive rates for the alerts (TPARs) ranged from 0.44 to 0.71. The TPAR for med-
ication order alerts specifically ranged from 0.31 to 0.61 and for laboratory order alerts from 0.44 to 0.75.
These results support outlier-based alerting as a promising new approach to data-driven clinical alerting
that is generated automatically based on past EMR data.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Medical errors continue to be a significant problem in health-
care. In 2000, the Institute of Medicine published the report ‘‘To
Err is Human – Building a Safer Health System”, which estimated
that as many as 98,000 Americans were dying each year as a result
of medical errors [1]. More recent studies suggest that the amount
of harm due to such errors is even greater. A 2010 report by the U.S.
Office of the Inspector General provides evidence to support a
medical error rate of 6% among hospitalized Medicare beneficiaries
(13.5% adverse event rate � 44% of adverse events that were
clearly or likely preventable) [2]. A literature review by James ana-
lyzed four studies published between 2008 and 2011 and derived
estimates of harm due to medical errors [3]. The number of patient
deaths due to such errors was estimated to be more than 400,000
per year; serious harm was estimated to be at least 10-fold more
common than lethal harm.

Studies support that some interventions are effective in reduc-
ing selected types of medical errors [4], including the use of com-
puterized physician order entry [5]. Nonetheless, a recently
published study showed no statistically significant decrease in
overall hospital-based medical errors during the period from
2002 to 2007 in North Carolina, even though that state has had a
high level of engagement in its efforts to improve patient safety
[6]. The authors conclude that ‘‘our findings validate concern raised
by patient-safety experts in the United States [4] and Europe [7]
that harm resulting from medical care remains very common.” It
is clear that there is considerable room for improvement in both
the penetration of existing methods for reducing medical errors
and the introduction of new, effective methods.

The focus of this paper is on the development and evaluation of
a data-driven monitoring and alerting approach that relies on
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stored clinical information of past patient cases and on statistical
methods for the identification of clinical outliers (anomalies) for
a current patient. The key conjecture behind the approach is that
the detection of anomalies corresponding to unusual patient man-
agement actions will help to identify medical errors. We have pio-
neered this new approach and reported its initial evaluation on
post-cardiac surgical patient population in Hauskrecht et al. [8–
10]. In this paper, we describe further enhancements of the outlier
detection methodology, including a new method for uniformly
controlling the rate at which alerts are raised. We also present
the results of a retrospective study of the methodology on patient
cases from the intensive care unit (ICU). We report the true posi-
tive alert rate (TPAR) of the system for the different alert frequen-
cies and demonstrate the improved TPAR for lower frequencies.
Finally, we perform an indepth analysis of the reasons for the false
positive alerts that occur.

The ICU has operating characteristics that predispose to medical
errors, including that it is fast-paced, complex, and involves high-
risk decision-making [11]. Multiple studies during the past 20
+ years have documented that a significant number of medical
errors occur in the ICU [12–14]. In a report published in 2005,
Rothschild and colleagues at Harvard describe a year-long observa-
tional study that they conducted in a medical and a cardiac ICU,
where they documented approximately one serious medical error
per 5.4 patient days [15]. At least 65% of those errors were related
to medication and laboratory orders, which are the focus of the
investigation reported in the current paper. A recent systemic
review and meta-analysis showed that on average those ICU
patients with adverse events (whether or not they were medical
errors) had significantly longer hospital stays (mean: 8.9 days;
95% CI: 3.3–14.7) and ICU stays (mean: 6.8 days; CI: 0.2–13.4) than
did ICU patients without adverse events [16].
2. Background

Clinical alerting systems are designed to detect adverse events
as early as possible. A common alerting approach uses rules that
check EMR data of a patient for a specific clinical condition or a
set of expert-defined physiologic criteria. If such patterns are iden-
tified in the data, an alert to the patient’s clinicians is raised [17].
The alert signal can take various forms, such as pop-up windows
on an EMR interface or email/paging messages sent to the patient’s
physician. Alerting systems have been extensively explored both
academically [18–20] and commercially [21–23]. They have been
applied in a variety of tasks, including detection of deviations from
infectious disease treatment protocols [22], detection of adverse
drug events [24,25], detection of growth disorders [19], and detec-
tion of clinically important events in diabetes [18] and congestive
heart failure management [26].
2.1. Knowledge-based alerting systems

The most common type of monitoring and alerting systems use
rules that are manually constructed by clinical domain experts
using their knowledge and personal experience. The alerts gener-
ated by these rules and their benefits are derived directly from
the experts’ experience. Examples include rules that screen for
drug allergies and interactions, as well as rules for syndromic diag-
nosis (e.g., suspected sepsis, acute lung injury) and disease severity
estimation [27]. However, knowledge-based alerting systems
based on rules (as currently being used) require manual construc-
tion, which can be time consuming and tedious. In addition, the
expert-defined rules have, by their design, limited coverage of
the large space of adverse events, particularly more complex
adverse events. In other words, knowledge-based rules can only
monitor and detect what they were explicitly built for. Finally,
the rules are hard to tune in advance to achieve clinically accept-
able performance in the environments in which they are deployed.
It is not uncommon for alert rules that were built with significant
expert effort to be retired (turned off) shortly after they are
deployed due to high false alert rates [28,29]. Even when such rules
remain active, their alerts may be ignored due to false alert fatigue
[28–30]. Thus, the performance of even carefully designed rules
need to be adapted and optimized carefully to achieve positive
clinical results, with minimization of false alarms being a key goal.
2.2. Outlier-based alerting

In our recent research work we have pioneered and developed a
new approach for medical error detection [8,9,31] that is comple-
mentary to the knowledge-based alerting approach. Briefly, an
alert is raised for clinical care decisions that are highly unusual
(anomalous) with respect to past patients with the same or similar
conditions. The rationale behind this approach is that the majority
of past patient records stored in an EMR reflect the local standard
of clinical care, and care that deviates from such standards (e.g., a
medication decision) can be detected and will correspond to errors
often enough to justify alerting. A major advantage of this
anomaly-based alerting method is that unlike knowledge-based
methods, it is data driven and does not depend on the monitoring
and alerting rules being built by an expert. Instead, the outlier-
based approach is driven by deviations from usual patterns of clin-
ical care. These features make the approach applicable to a wide
range of clinical environments and conditions, hence the clinical-
alerting coverage is broad and deep (unlike for knowledge-based
systems). Outlier-based monitoring and alerting has potential to
complement the use of knowledge-based alerting systems that
are currently deployed, thereby improving overall clinical coverage
of current alerting systems.

This paper reports the next step of the development and testing
of our outlier based alerting methodology. The paper describes a
new way for precisely controlling the true alert rates that the
method generates, and it reports a retrospective evaluation of the
method on a set of ICU patient cases.
3. Methods

The outlier-based alerting framework we have developed works
in two stages: a model-building stage and a model-application stage.
In the model-building stage it uses cases from an EMR repository to
train outlier models that summarize when certain patient manage-
ment actions are typically made. Outlier models are built using sta-
tistical machine learning methods and represent probabilistic
models of patient-care actions applied in response to various
patient conditions in the past. There are multiple outlier models
in the system covering different aspects of care, such as medication
and laboratory (lab) orders. For example, a heparin model captures
patient subpopulations for which heparin is typically prescribed,
subpopulations for which it is not, and subpopulations for which
it is typically discontinued. Similarly, a lab-order model summa-
rizes patient conditions for which the lab is typically ordered and
for which it is not. In general, a model, such as one predicting
the ordering of a glucose level, will contain multiple predictors,
such as functions of earlier medication orders, laboratory orders,
and laboratory results. In the model-application stage, the outlier
models are continuously applied to new patient data to identify those
actions that are unusual and deviate from the prevalent pattern of
care, as represented in the outlier models. An unusual action,
which may correspond to an unusual omission or commission of
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a medication order or a lab order, is identified and an alert is raised.
We next describe each of these stages in more depth.
3.1. Building (training) action-specific outlier models

Our framework first segments each patient case into multiple
patient-state instances using fixed 24-h time segmentation. It then
uses feature construction methods proposed in [32] that take time
series of measurements of labs, physiological parameters, and
medication orders to create a wide assortment of temporal fea-
tures representing a patient case and its history up to a specific
segmentation time t. Examples of features generated for a lab time
series (e.g., platelet count time series) are the last observed value of
the lab, and the slope of the lab value that is derived from its two
most recent values. Similar features are built for time series repre-
senting medication administration history, as for example a feature
indicating that a certain medication (e.g., heparin) is currently
given to the patient, or a feature reflecting the overall duration of
the treatment. Appendix A gives a complete set of temporal fea-
tures we generated for the different types of clinical variables
(lab tests, physiological variables, and medications) and their
time-series.

The features generated for the segmentation time t define a
patient state instance s at that time and summarize what is known
about the patient and her past up to that time. Every patient state
instance s is then associated with clinical care actions (medication
orders and lab orders) executed in next 24 h, that is, actions
observed in time interval (t, t + 24 h]. The actions are encoded
using a vector of binary values, where value 1 means the order
was made in next 24 h and value 0 that it was not. For example,
if an INR lab test was ordered in next 24 h, its value in the binary
vector is 1. In the end, these steps allow us to produce a dataset
of inputs s (representing individual patient states) and associated
actions a that follow them.
3.1.1. Model learning
We used a Support Vector Machine (SVM) [33] with a linear

kernel to learn a probabilistic model that predicts future clinical
care actions from the patient-state features. We build models for
each action a, that is, we build a separate model for predicting
orders of heparin, aspirin, INR lab, etc. For a given action a, we
determine how predictive is each clinical variable (and all its fea-
tures) for that action individually. We assess the predictive ability
of a clinical variable using a linear SVM method and internal train
and test splits of the training data. The clinical variables are ranked
in terms of the area under the ROC curve (AUROC). For each action
a, we determine the 30 highest ranked clinical variables that pre-
dict it. We use the union of the full feature sets for these 30 vari-
ables to build the final model for predicting action a. Using these
features and the training data, we apply the linear SVM method
to learn a model that predicts the probability of action a given
the features.

We note we chose the feature complexity of the current models
by performing a limited experiment comparing the AUC perfor-
mance of the models with features for the top 20 clinical variables
(used in our previous study [8–10]), top 30 clinical variables (our
current models), and for all clinical variables, respectively. The
models with all features did not show any improvement over the
models with 30 clinical variables which we attribute to a very large
feature space the SVM algorithm had to optimize over and model
overfitting. In addition, these optimizations were costly in terms
of computational time, so the approach was clearly suboptimal.
In terms of models with features based on the top 20 and the top
30 clinical variables, the models with 30 clinical variables were
better than models with 20 clinical variables in 55% of medication
order models, worse for 23%, and unchanged for 22% of models.
Similarly, the models for lab order actions based on 30 clinical vari-
ables were better for 40% models, worse for 20%, and unchanged
for 40%. All SVM models were built using the liblinear package
[34] with hinge loss and the L2 regularization options.

3.1.2. Model calibration
The SVM model for action a defines a discriminative projection

for a, reflecting whether it should be taken or not. We transform
this projection into a calibrated probability [35] P(a = 1|s) using a
non-parametric approach. We chose a non-parametric calibration
approach over monotonic ones because the distribution of positive
and negative examples in the tails of the projection did not show
monotonic improvements. In particular, we use a non-parametric
calibration approach that relies on multiple histogram binning
models, each defined by a different number of uniform size bins,
and uses them to estimate P(a = 1|s) by averaging over predictions
of these models.

In the experiment section we use three binning models with
200, 400, and 600 bins, respectively, to calculate the estimates.

3.1.3. Model selection
Not all SVM models are good enough and suitable for outlier

calculations and alerting. Briefly, a good model should predict very
well the action to be taken next. We used two criteria to select
good predictive models: the area under the ROC (AUROC), and a
special avgPPVtop10 statistic. The avgPPVtop10 statistic is based
on identifying the ten highest values for P(a = 1|s) over all patient
instances and using the average of those ten values. It is used to
assess how strongly the model and the evidence in past data would
support alerts for action a = 1. A higher value in both statistics indi-
cates a better model. We used these statistics to define strong pre-
dictive models that satisfy AUROC > 0.7 and avgPPVtop10 > 0.5.

3.2. Monitoring and alerting

3.2.1. Outlier score
We used the probabilities derived as calibrated SVM model pre-

dictions for strong models to develop an outlier score which mea-
sures how unusual are patient-management actions. The score
ranges from 0 to 1, with 1 (0) representing the most (least) unusual
action. In particular, an outlier for a binary action a (e.g., heparin is
not ordered) is derived from the probability of the counterfactual
action a (heparin is ordered), that is, the action that was not taken.
For example, suppose heparin was not ordered in 24 h following a
patient state s, and based on the trained model the probability of
the counterfactual action – heparin is ordered – is P(heparin is
ordered within 24 h|s) = 0.98. Then the outlier score for heparin
would be OutlierScore (s, heparin is not ordered within 24 h follow-
ing s) = 0.98. As mentioned, the closer the score of an action taken
is to value 1, the more unusual (anomalous) the action is relative to
the clinical context given by s.

3.2.2. Alert score
The outlier score measures how anomalous is action a taken

within 24 h of patient state s, relative to the expected action. How-
ever, the anomaly with respect to s may not persist if the patient
state has changed. We define an alert score to measure the persis-
tence of the anomaly of action a in a new state s0 that is reached
after 24 h following s (call this time t0) during which a was taken.
In essence, t0 denotes the current time at which the system is
determining whether to raise an alert about action a. More specif-
ically, we define the alert score for action a, as being AlertScore (s0,
a) = min [OutlierScore (s, a), OutlierScore (s0, a)]. For AlertScore to be
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high, action a must be anomalous at both at the beginning and end
of the 24-h time period during which a was taken, which provides
support that the action remains anomalous when an alert on it is
raised at time t0. The alert score for each action in a monitored
patient is recalculated every 24 h and reflects the urgency to raise
an alert with respect to that action at that time.
3.2.3. Controlling the alert rate
The alert scores for an action a when applied to many different

patient states let us order (rank) these states in terms of the alert
urgency for action a. A threshold defined relative to this order
can be used to control the alert rate (the fraction of alerts sent)
for action a. In principle one could attempt to combine outlier
scores for different actions to control overall alert rates across all
actions supported by strong models. However, this approach did
not work well since alert scores across different actions varied
widely contradicting the key assumption that outliers are gener-
ated by a random process. To address this issue and permit the uni-
form alert control, the alerts sent by our system and their
frequency (rates) are controlled with the help of a shared alert
parameter a e [0,1] and action-specific alerting thresholds derived
from this parameter. More specifically, let a be an observed clinical
action (e.g., heparin not ordered) and Rate(:a) be the average rate
at which the counterfactual of the clinical action (:a) is observed in
the training data (e.g., the number of heparin orders per patient per
day). We define the alerting threshold ha for action a and alerting
parameter a e [0,1] to be the product a ⁄ Rate(:a). In other words,
the threshold ha that determines the rate with which we wish to
raise an alert for action a is a fraction of occurrence (as determined
by a) of the counterfactual action in the data. For example, amight
be 0.05, in which case we wish to raise an alert for the 5% of action
a occurrences that are most anomalous. With this method, the
expected alert rates for all models can be globally increased or
decreased by changing an alerting parameter a that is used in set-
ting ha for each a. Moreover, we can tune a so that the expected
global alert rate is less than some specific limit (e.g., no more than
one expected alert per 20 ICU patients per day).

We would like to note that the above alert control approach can
be used for both retrospective and prospective selection of alerts.
Briefly, using the past training data, for each supported action a
we can estimate Rate(a). Then using the alert scores for past data
we can find the action specific threshold ha that corresponds to
the alert score for action a that would pass a ⁄ Rate(a) fraction of
alerts. A set of action specific alert thresholds is then used to either
pass or filter alert candidates.
4. Experiments on ICU dataset

The HIgh-DENsity Intensive Care (HIDENIC) dataset is a com-
prehensive database of 24,658 admissions (cases) to the ICUs
between Dec 1999 and June 2004 that have been assembled from
a variety of legacy services at the University of Pittsburgh Medical
Center (UPMC). HIDENIC contains approximately 2000 different
variables that are grouped in distinct domains of information that
include extended demographics and hospital flow (hospital unit,
admission/discharge/transfer date and time information); detailed
physiology (vital signs, intake/output, severity of illness); prospec-
tive clinical diagnosis (APACHE scores); interventions (ventilation,
dialysis, drugs with precise timing of administration, etc.); imaging
study reports (radiology, echo, etc.); laboratory, pathology, micro-
biology orders and results; clinical notes; and administrative dis-
charge abstracts (including ICD-9 diagnoses and time-stamped
procedures). Among all the data in HIDENIC, we used the clinical
information shown in Appendix A for the study reported in this
paper.
4.1. Outlier model building and model selection

4.1.1. Model building
Each patient record was segmented into a time-series of

increasing lengths of time (in 24 h increments). Each time-series
was summarized by a vector of over 14,000 different features that
were constructed from clinical variables that included medication
orders, laboratory orders, laboratory results, physiological vari-
ables, and volume measurements. These features constitute state
s mentioned above, and this vector represents a patient instance.
The data were split into a training dataset of 16,500 ICU patient
cases (admitted from Dec 1999 till March 2003) and a testing data-
set of 8158 ICU patient cases (admitted from March 2003 till June
2004). The training and testing datasets are mutually exclusive,
and the patient cases in the training dataset were admitted to
the ICU prior to the patient cases in the test dataset, with a small
portion of patients overlapping they stays. The training and testing
patient cases were used to generate 225,894 training and 104,698
testing patient instances, respectively. We built a calibrated prob-
abilistic SVM model for predicting each type of action (medication
orders and laboratory orders) from the training set and applied the
models to the test set for identifying omissions of medication
orders and laboratory orders. In total, we built SVM models for
1075 different types of medication orders and 222 different types
of laboratory orders.

4.1.2. Model selection
As discussed above not all SVM models are suitable for outlier

calculations and alerting. We proposed two statistics to select
strong predictive models: the area under the ROC (AUROC), and a
special avgPPVtop10 statistic. Appendix B summarizes the quality
of predictive models built from the data and the distribution of
their AUROC and avgPPV10 scores. Out of all the alert models,
99 laboratory omission models and 156 medication omission
models were strong predictive models (AUROC > 0.7 and avgPPV-
top10 > 0.5). These models were used to generate alerts for the
study and were the basis of our analysis.

4.2. Study cases and their assessment

We applied strong alert models to test patient state instances
and used them to calculate alert scores for the different lab and
medication actions. For each patient state, action and their alert
score we calculated minimum alert parameter value amin, that is,
the minimum a value that would lead to an alert. We used these
amin values to randomly select 420 alerts from all alert candidates
and assess their quality. The number of alerts evaluated was con-
strained by practical considerations, including the number of crit-
ical care physicians we could recruit to assess them. The alert
selection was weighted more heavily towards medication alerts
for which we had a larger number of stronger models. In particular,
out of 420 alerts selected 270 were medication omission alerts and
150 were lab omission alerts. We stratified the selection of alerts in
order to represent the different degree of anomalousness as
reflected by their amin values. More specifically the alerts were
stratified into subgroups that cover different amin ranges (see
Appendix D). The stratification helped us to evaluate and compare
the performance of the alerting method at different operating
points (alerting thresholds).

The alerts were evaluated by 18 physicians from the
Departments of Critical Care Medicine and Surgery at the
University of Pittsburgh. The physicians were divided into six
groups of three physicians. Each physician evaluated 50 alerts,
such that 40 alerts were shared and evaluated by all three
members of the group, and 10 were unique and evaluated by only
that individual reviewer. This led to 240 alerts evaluated by three
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physicians (shared alerts), and 180 alerts evaluated by just one
physician for the total of 420 alerts. The analysis in this paper
focuses on the shared alerts.

The 240 shared alerts that were generated included 165
medication-omission alerts (for 64 different types of medication
orders) and 75 laboratory-omission alerts (for 22 different types
of laboratory orders). Appendix C gives a list of medication and
lab orders used to generate shared alerts. Appendix D summarizes
the distribution of shared alerts with respect to the different amin

alert threshold ranges.
4.2.1. Assessments of alerts
The alerts were presented to the reviewers using a case review

interface we developed called PATRIA that graphically displays the
information in a patient’s EMR up to the time of the alert. The
interface lets the reviewer see the alert raised and peruse the
EMR data of the patient that are known prior to the alert, includ-
ing all text reports (progress notes, operative and procedure notes,
radiology reports, EEG and EKG reports), lab results, medications,
physiological parameters, volumes, and procedures performed.
After perusing the case, the reviewer completed an electronic
questionnaire to specify: (1) the appropriateness of the alert
raised, (2) a free text comment section asking the reviewer to
justify agreement/disagreement with the alert, (3) whether the
reviewer would follow up on the alert with a clinical action, if
the reviewer were managing the case prospectively, and (4) the
clinical importance of any such action for patient management.
The main study question: Will you take a clinical action based on
receiving this alert? was used to assess each alert. We used the
majority vote to define the reviewers’ consensus. That is, if at least
2 out of 3 of the reviewers answered ‘‘yes” to the question, then
the alert was assessed to be a true positive and labeled as
‘‘appropriate.” Appendix E shows the pairwise Cohen’s kappa
agreements of the reviewers in each of the six groups. Somewhat
lower kappa statistics observed in some of the groups are
discussed in Section 6.
4.2.2. True positive alert rate
The number of true positive alerts divided by the total number

of alerts, which we call the true positive alert rate (TPAR), is the key
statistic that we used to evaluate the alerting system. We evalu-
ated TPAR at different values of the alert parameter a, which rep-
resents different operating points of the system. The secondary
statistic that we calculated and analyzed was the alert rate, which
reflects the average frequency of alerts raised by the system per
unit time.
Table 1
TPARs for the outlier-based alerting framework and the different values of alert parameter
(Std err). Also included is the alert rate for each corresponding alert threshold and TPAR. Th
errors very close to zero for all alert rate entries; hence they are excluded from the table.

Lab orders (22 models) Med order

Alert parameter TPAR Std err Alert ratea TPAR

0.001 0.750 0.129 0.004 0.583
0.0025 0.643 0.121 0.011 0.603
0.005 0.657 0.110 0.022 0.523
0.01 0.482 0.103 0.044 0.437
0.015 0.445 0.124 0.066 0.416
0.025 0.469 0.119 0.109 0.440
0.04 0.603 0.089 0.175 0.464
0.06 0.612 0.089 0.263 0.424
0.08 0.608 0.101 0.350 0.319
0.1 0.608 0.101 0.438 0.309

a Number of alerts per patient per day.
4.3. Analysis of incorrect alerts

The TPAR results demonstrate the potential of our approach in
raising clinically important alerts. However, an equally important
issue is to understand when the framework makes mistakes and
raises incorrect alerts. To obtain an understanding of such alerts,
we analyzed free-text answers provided by the evaluators.

We applied the following procedure to conduct the free-text
analysis. First, from all shared alerts (240) and their reviews
(720 = 240 � 3) we selected the alerts the evaluators deemed as
inappropriate. The alerts marked as an ‘inappropriate alert’ by
one of the 18 evaluators included 81 lab alerts (out 225 evaluated
lab alerts) and 261 medication alerts (out of 495 medication
alerts). Two of the authors of this paper (Clermont and Viswes-
waran) then analyzed the answers and developed a set of qualita-
tive categories representing the different reasons that reviewers
disagreed with the alerts. Both authors are clinicians and neither
were reviewers in the alerting study.

Next, the two clinicians individually reviewed each alert assess-
ment marked as an ‘inappropriate alert’ by one of the 18 clinicians
evaluating alerts and assigned it to one of the categories explaining
the reasons for the disagreement. After the initial assignment, the
two clinicians met and reconciled the differences among them
through discussion and consensus. This process led to a unique
assignment of all ‘inappropriate alerts’ to one of the qualitative
categories.
5. Results

This section first reviews the alert performance of the system
and then describes the types of errors that it made.
5.1. Analysis of alert performance

Table 1 summarizes results based on the assessments of the 240
alerts that were each reviewed by three reviewers. The table lists
the TPARs for the different thresholds on the selected models and
the alert rate, which is measured as the number of alerts per
patient per day for those models. The results for medication omis-
sion and lab order omission alerts are tabulated both separately
and combined. Consider, for example, an entry for alert parameter
a = 0.025. If our system was operated at this parameter value, the
estimated TPAR for the medication omission alerts is 0.4396, or
just under 1 correct alert per two alerts raised, and the estimated
average alert rate is 0.0318, which is a little over 3 such alerts
raised for every 100 patient days.
a that were estimated based on the reviewers’ assessments and their standard errors
e alert rate estimates are based on 104,698 test patient instances leading to standard

s (64 models) Combined (86 models)

Std err Alert ratea TPAR Std err Alert ratea

0.142 0.001 0.712 0.105 0.005
0.090 0.003 0.634 0.096 0.014
0.085 0.006 0.627 0.087 0.028
0.068 0.013 0.472 0.081 0.056
0.059 0.019 0.439 0.096 0.085
0.063 0.032 0.462 0.093 0.141
0.062 0.051 0.572 0.070 0.226
0.063 0.077 0.569 0.070 0.339
0.056 0.102 0.542 0.079 0.453
0.054 0.128 0.520 0.073 0.566



Table 2
TPARs for the outlier-based alerting framework estimated based on follow-up actions observed in the EMR data and standard errors of these estimates. Also included are alert
rates for each threshold and corresponding TPARs.

Lab orders (22 models) Med orders (64 models) Combined (86 models)

Alert parameter TPAR Std err Alert rate TPAR Std err Alert rate TPAR Std err Alert rate

0.001 0.557 0.024 0.004 0.289 0.045 0.001 0.507 0.021 0.005
0.0025 0.529 0.015 0.011 0.267 0.025 0.003 0.474 0.013 0.014
0.005 0.519 0.010 0.022 0.247 0.017 0.006 0.459 0.009 0.028
0.01 0.520 0.007 0.044 0.230 0.012 0.013 0.456 0.006 0.056
0.015 0.519 0.006 0.066 0.211 0.009 0.019 0.450 0.005 0.085
0.025 0.512 0.005 0.109 0.216 0.007 0.032 0.445 0.004 0.141
0.04 0.494 0.004 0.175 0.210 0.006 0.051 0.430 0.003 0.226
0.06 0.478 0.003 0.263 0.202 0.004 0.077 0.415 0.003 0.339
0.08 0.451 0.003 0.350 0.197 0.004 0.102 0.394 0.002 0.453
0.1 0.419 0.002 0.438 0.191 0.003 0.128 0.367 0.002 0.566

Table 3
Categories of inappropriate lab-order alerts and their counts.

Category #
Alerts

Lab test results recently obtained 9
A different lab test might provide more information 3
A different lab test was obtained with same information 1
No clinical indication to order lab (lab would not help medical

decision making, condition being alerted upon was resolved/
resolving/stable, comfort care, patient death)

68

81
(total)

Table 4
Categories of inappropriate medication-order alerts and their counts.

Category # Alerts

Already receiving the alerted medication or an alternative,
equivalent medication

38

Contraindication 29
Old indication 8
No indication (no clinical justification, medical justification has

elapsed, comfort care, patient death)
142

Insufficient data to make determination 44

261
(total)
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Table 1 estimates TPARs based on the reviewers’ answers. Since
the analysis was done by retrospective review of past patient cases
in the test set, we also had access to data and actions taken by
physicians after the alerts would have been raised. In particular,
we could see and analyze if the actions our system alerted on were
taken by physicians in the next 24 h after the alerts were raised. (of
course without them seeing the alert). Table 2 shows the TPAR
results derived from the observed action for all alerts raised for
the models in the study at varying thresholds.

The results in Table 1 show that our alerting approach yields
good TPARs across a wide range of alert thresholds explored in
the study. In particular, TPARs for medication omission alerts vary
from 0.3 to 0.58 and TPARs for lab omission alerts from 0.45 to
0.75. The results also indicate that by tightening the alerting
threshold one is able to control the TPAR, that is, the TPAR tends
to be higher for the tighter threshold and decreases by gradually
relaxing the threshold.

We note that the certainty of the estimates in Table 1 (estimates
based on reviewers’ feedback) is influenced by the limited number
of expert assessments of alerts that were practical to obtain, and
the standard errors are rather high, especially for lab omission
results. Thus, an iregularity in the expected drop in TPARs for
higher threshold values is likely the result of estimation error
due to the limited sample size. The estimates in Table 2 are based
on a much larger sample size and hence the estimates are more
certain. These TPAR values are monotonically decreasing, as we
would expect. The results clearly show this TPAR can be effectively
controlled by changing alert parameter a. The differences between
the TPARs in the two tables are expected. The TPARs derived in
Table 2 can be viewed as approximating a lower bound on the per-
formance of the system. Briefly, this TPAR is based on the exact
match in actions we (hypothetically) alerted on. However, in real
patient management (without alerts) the need to order a medica-
tion or a lab may have been overlooked for more than 24 h, or a
comparable action may have been taken instead of the action rec-
ommended by our system.

5.2. Analysis of incorrect alerts

For each alert that a clinician-rater judged rated as ‘‘inappropri-
ate”, we assigned it to a category that captures the reason the alert
was judged as inappropriate. Tables 3 and 4 summarize the results
for lab and medication alerts, respectively.

For lab order omissions, the reviewers thought that in 13 cases
the lab test was either correctly ordered or that there was a more
informative lab other than the one alerted on that was either
ordered or should have been ordered, such as INR lab instead of
PTT. The largest number of incorrect lab order alerts (68) was asso-
ciated with alerts that did not seem to have any indication or the
clinicians thought they were not needed. Examples included
instances of comfort care, or when previously high values of a
lab were trending down and the physician believed further fre-
quent monitoring of values was not needed.

For medication order alerts, the reviewers believed that in 38
cases the patient was receiving the medication the system alerted
on or was receiving an equivalent medication. One example is
alerting on the absence of an order for nizatidine when the patient
was already on famotidine. In 29 cases the reviewers thought the
order alerted on was contraindicated. An example is an alert on
the absence of an order for amlodipine while the patient was on
vasopressors. Another example is an alert on the omission of furo-
semide when the patient was allergic to that drug. In 8 cases the
reviewers believed the agent that was recommended by the sys-
tem would not be used today; note the training data in this study
spanned the years 2000–2004. The majority of inappropriate med-
ication order instances (142) were categorized into a ‘‘no indica-
tion” category. One example of this category is an alert on the
omission of a potassium supplement for a patient with acute kid-
ney injury that will likely need hemodialysis. Another example is
alerting on a hematopoetic agent for the patient who was low on
hemoglobin due to a known GI bleed. Finally, in 44 cases the physi-
cians believed there were insufficient data in the EMR to make the
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determination of the alert, such as a recommendation of Percocet
with no information on patient’s level of pain.
6. Discussion

The results of this study show that outlier models built from a
subset of lab and medication orders can raise clinically useful alerts
with true alerts rates of 30–60% for medication omissions and 45–
75% for lab order omissions. These rates compare favorably to the
performance of knowledge-based alerting systems reported in the
literature. Briefly, knowledge-based alerting systems in the litera-
ture are usually evaluated in terms of alert override rates
[28,29,34,36,37]. The override rates may be influenced by multiple
factors, such as the frequency of alerts and their quality [36,38]. In
general, high frequency and low quality alerts can lead to alert
fatigue and subsequent high override rates [28,29,36,38,39]. The
override alert rates that have been reported for a variety of drug
safety systems in the above literature are in the 0.49–0.96 range.
If override rates approximate false alert rates, then the TPARs
corresponding to the override alert rates just quoted are in the
0.04–0.51 range, and thus, the TPARs in our study compare very
favorably to them. Similarly, our results compare favorably to
TPARs of 0.01–0.14 for clinical monitoring systems reported by
Graham and Cvach [40]. The experimental data are consistent with
higher true positive alert rates occurring when we restrict the
alerts to those with higher alerting scores. This finding suggests
that we may be able to adjust true positive alert rates of such a
monitoring system to achieve performance that is clinically accept-
able. Such adjustments are not supported by knowledge-based
alerting systems.
6.1. Limitations

Our methodology relies on a probability estimate of an action to
be taken. To calculate this estimate, we use a linear SVM model,
combined with a calibration approach that is based on averaging
over multiple binnings models. Obtaining high-quality probability
estimates from limited sample sizes in general is a hard task. Our
approach is limited by the particular methods we use for modeling
(linear models) and calibration (averaging of binning models).

Another open issue is the methodology for controlling the alert
rates. An ideal solution would be to control the alerts for all actions
by thresholding a single alert quantity that would reflect the devi-
ation from the standard care and hence the desirability of raising
an alert on that patient state. One possible approach would be to
control alerts directly based on the alert score derived from prob-
abilistic models in Section 3.2. However, the quality of our models
for the different actions vary considerably due to various model
assumptions (see above) and the sample sizes used to estimate
them. This in turn would bias alert selection based on the alert
score only to models capable of predicting high probabilities of
actions, other models would not be able to reach high probability
scores and hence would not be alerted on. Our current methodol-
ogy overcomes this problem by controlling alerts using a shared
alert parameter a, and the alert score is used only to rank alerts
for each action individually. Doing so permits a wider range of
alerts to be included and raised, but, at the same time opens up
a possibility that alerts for bad (unpredictive or weakly predictive)
models will be generated, leading to random or close to random
alerts. The model selection step assures that only models of certain
minimal quality are used to generate the alerts which in the end
prevents a generation of such alerts.

The study results were calculated based on the majority con-
sensus of the raters evaluating the alerts. The analysis of raters’
agreements (Appendix E) showed lower kappa statistics among
the raters in some of the reviewers’ groups than others. One reason
for variation may be that the raters where not highly familiar with
our case-review inteface and different reviewers found and used
different sources of information to make their assessments. We
believe, however, that in the majority of cases the disagreements
show natural variability and diversity of opinion among the clini-
cian raters about the appropriateness and utility of the raised
alerts. If we had used an alert threshold that was highly lenient
and admitted many alerts, even those that are not very anomalous,
we would expect high rater agreement that most alerts were inap-
propriate. If the alert threshold were highly restrictive and admit-
ted alerts only on very anomalous actions, we would expect
relatively high rater agreement that the alerts are appropriate.
When working within a range of alerting thresholds that are
between those two extremes, as we did, it is not surprising that
there may be a wider range of opinion about the appropriateness
of the alerts, and thus, lower kappa statistics.

6.2. Advantages

The advantages of outlier-based alerting include that it provides
broad coverage of clinical care, and it can be learned automatically
from an archive of EMR data, updated automatically over time, and
adapted to a local healthcare setting. The outlier-based approach
we developed is also probabilistic, which provides a clear seman-
tics for alerting and for explaining alerts to users. A clinical action
that is an outlier is not necessarily an error. Nonetheless, we con-
jecture that a system can be developed in which outliers will be
errors often enough such that it is worthwhile to raise them. The
alert that is raised states that ‘‘this is an outlier” and not ‘‘this is
an error.” It is up to the clinician to determine if the outlier is an
error that needs attention. There are several reasons why an outlier
might not be a medical error. Inadequate training data or a
machine-learning model that is not sufficiently sophisticated
might result in an appropriate clinical action being labeled as an
outlier. Also, in highly unusual or complex situations, there may
be little or no precedence for the clinical action that is taken, which
would make it an outlier, even though the action may be appropri-
ate. It is also possible that for some clinical actions the usual prac-
tice is not the best approach; in that case, the best clinical action
could be flagged as an outlier. It is an empirical question whether
our conjecture above is valid in particular clinical environments.
The results of this study provide support for it, although additional
study is still needed.

Knowledge-based alerting and outlier-based alerting could be
used together. The knowledge-based alerts might encode relatively
rare or complex clinical situations that would be difficult for an
outlier-based system to learn. The outlier-based system could pro-
vide broad coverage of many clinical situations for which it would
be impractical to write all the rules manually. With such a dual
system, it is possible that they may sometimes contradict each
other (or at least appear to do so). For example, suppose a clinician
ordered medication med1 for a given patient. The knowledge-base
system might raise an alert indicating that medication med2 is
more appropriate. The clinician then switches the order to med2,
but receives an alert from the outlier-based system saying that
med2 is unusal in the patient’s current clinical context. This
sequence of alerts is not neecssarily contradictory, because both
alerts might be valid for what they each represent. Nevertheless,
in such a situation, the system could provide the clinician with
both alerts and indicate the need for the clinician to resolve them.

6.3. Future work

The analysis of incorrect alerts revealed the limitations of our
current method and suggests possible avenues for model improve-
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ments. First, while the models were able to capture the main pat-
terns of care, they made mistakes in cases where a special condi-
tion made the order inappropriate or when one of many
alternative treatments was already given to treat the problem
instead. The reasons for not capturing these special conditions
were either because the data recording them were not used in
the model (e.g., we did not use allergy data) or the relations in
between these special conditions and the orders were not repre-
sented abundantly enough in the training data to capture these
associations. One way to improve the methodology is to automat-
ically learn when actions do and do not tend to co-occur. Such a
capability will generalize the current system, which only alerts
on one action at a time, to a system that considers joint actions
in raising alerts.

Our current plans are to develop and evaluate a real-time ver-
sion of an outlier-based alerting system. This system will use an
archive of ICU EMR data for training that is much larger than used
in the study reported here. We plan to investigate several improve-
ments in model training, including increasing the temporal granu-
larity of alerting and modeling medication dosages. As the data
capture infrastructure is constantly updated, models can be recom-
puted and we expect the set of active models to evolve in time, as
medical practice evolves. The system will monitor current ICU
patients in (almost) real time and raise outlier-based alerts. The
alerts will be received and assessed by Critical Care physicians
who are off service for a month. These physicians will be able to
access the real-time EMR system to inform their evaluation of
the alerts. If this evaluation obtains positive results, as we antici-
pate, then we plan to carry out a clinical trial to examine whether
an outlier-based alerting system impacts outcomes such as length
of stay and patient morbidity and mortality.
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Appendix A

Clinical information (and related features) used for constructing predictive models from EMR data. The features were extracted from
time series data in EMRs.
Clinical variable
type
Features
Basic patient info
 age
sex
height result indicator
height
weight result indicator
weight
BMI indicator
BMI
ICU admission info
 Admission diagnosis code
Time since admission
Time since diagnosis change
Apache3 score
Admission categories (19 categories such as trauma,
infectious, and surgical)
Lab test t
 last value measurement for lab t
time elapsed since last measurement for t
pending result for lab t
known value indicator for t
known trend indicator for t
2nd last value measurement for t
difference for last two measurements for t
slope for last two measurements of t
% drop for last two measurements of t
% drop for last two measurements per day
nadir value for lab t
difference for last and nadir values for t
slope for last and nadir values for t
% drop for last and nadir values of t
% drop for last and nadir values per day apex value for t
difference for last and apex values for t
slope for last and apex values of t
% drop for last and apex values of t
% drop for last and apex values per day
baseline (1st) value for lab t
difference for last and baseline values for t
slope for last and first values for t% drop for last and first
values of t
% drop for last and first values per day
overall slope for lab t
difference for last and mean value of t
time difference between two last lab values
Physiological
parameter s
last value of parameter s
time elapsed since last reading of s
s value known indicator
average value of s over last 2 h
average value of s over last 4 h
average value of s over last 6 h
average value of s over last 24 h
difference of average over last 2 h from the
mean value of s
difference of average over last 24 h from the mean value
of s
difference of last value from average over last 2 h
difference of last value from average over last 4 h
difference of last value from average over last 6 h
difference of last value from average over last 24 h
nadir value of s over last 24 h
apex value of s over last 24 h
difference of last value from 24 h nadir
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Appendix A (continued)
Clinical variable
type
Features
difference of average over last 4 h from the
mean value of s
difference of average over last 6 h from the
mean value of s
difference of 24 h apex from last value
difference of 24 h apex and 24 h nadir
I/O volumes
 Known I/O volumes indicator
Total intake over last 24 h
Total intake via IV over 24 h
Total intake oral over last 24 h
Total intake other over last 24 h
Total output over last 24 h
Total output urine over last 24 h
Total output other over last 24 h
I/O balance over last 24 h
Medication m
 Patient on medication m
Time elapsed since last administration of
medication m
Time elapsed since first administration of
medication m
Time elapsed since last change in medication
administration m
Procedure p
 Patient had procedure p in past 24 h
Patient had procedure p during the stay
Time elapsed since last procedure p
Time elapsed since first procedure p
Appendix B

Area under the ROC curves ranges for all models built from data for predicting lab-order and medication-order omissions.
AUROC range
 # of lab-order omission models
 # of medication-order omission models
 Total # of models
(0.95, 1.00]
 24
 15
 39

(0.90, 0.95]
 18
 79
 97

(0.85, 0.9]
 54
 151
 205

(0.80, 0.85]
 44
 187
 231

(0.75, 0.80]
 14
 154
 168

(0.70, 0.75]
 23
 58
 81

(0.65, 0.70]
 0
 28
 28

(0.60, 0.65]
 0
 18
 18

(0.55, 0.60]
 0
 14
 14

(0.50, 0.55]
 0
 6
 6

0.50
 45
 365
 410

All
 222
 1075
 1297
avgPPVtop10 statistics. The quality of predictive models built from data in terms of avgPPVtop10 statistics and their distribution. Only mod-
els that passed the AUROC > 0.70 threshold are included. Higher avgPPVtop10 values reflect models that are stronger for predicting outliers
and alerts. The N/A entry records the number of models for which less than 10 patient instances had action a = 1.
avgPPVtop10 range
 # of lab-order omission models
 # of medication-order omission models
 Total # of models
(0.90, 1.00]
 77
 62
 139

(0.80, 0.90]
 12
 22
 34

(0.70, 0.80]
 4
 24
 28

(0.60, 0.70]
 4
 18
 22

(0.50, 0.60]
 2
 30
 32

(0.40, 0.50]
 5
 28
 33

(0.30, 0.40]
 4
 17
 21

(0.20, 0.30]
 6
 33
 39

(0.10, 0.20]
 17
 72
 89

[0, 0.10]
 38
 304
 342

N/A
 8
 80
 88
All 177 690 867
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Appendix C

Medication order alerts. 64 medication order alerts analyzed during the evaluation study. C prefix denotes classes of medications.
Fentanyl
 Lansoprazole
 C_SkeletalMuscleRelaxants

Norepinephrine
 Haloperidol
 C_HematopoieticAgents

Metronidazole
 Bactrim
 C_LoopDiuretics

Metoprolol
 Amlodipine
 C_DirectVasodilators

Albuterol
 Multivitamin
 C_MiscellaneousAntibacterials

Dobutamine
 Casanthranol
 C_Anticonvulsants,Miscellaneous

Furosemide
 Simvastatin
 C_AntiarrhythmicAgents

Potassium
 Lisinopril
 C_NitratesandNitrites

Famotidine
 Epoetinalfa
 C_NonsteroidalAnti-inflammatoryAgents

Morphine
 Bisacodyl

Nizatidine
 Sodiumphosphate
 C_IronPreparations

Nitroprusside
 Dextrose
 C_Dihydropyridines

Magnesium
 Cytomegalovirusimmuneglobulin
 C_Antidepressants

Diltiazem
 C_AntiulcerAgents,AcidSuppressants
 C_Antipsychotics

Pantoprazole
 C_Anticonvulsants
 C_Platelet-aggregationInhibitors

Acyclovir
 C_Anxiolytics, Sedatives, Hypnotics
 C_5-HT3ReceptorAntagonists

Iron
 C_Diuretics
 C_Biguanides

Aspirin
 C_ImmunosuppressiveAgents
 C_AntiheparinAgents

Calcium
 C_Mydriatics
 C_SelectiveBeta1AdrenergicAgonists

Percocet
 C_Antivirals
 C_ClassIIIAntiarrhythmics

Sodiumbicarbonate
 C_ThyroidandAntithyroidAgents
 C_FourthGenerationCephalosporins

Vasopressin
 C_CoumarinDerivatives
Lab order alerts. 22 lab order alerts analyzed during the evaluation study.
Base Deficit
 PTT
 CPK, Total

HCO3
 RDW
 CPK-MB

ABS Lymphs
 WBC
 Creatinine & GFR

Basophils
 ALT_B_SGPT
 Ionized Ca

INR
 AST_B_SGOT
 LDH

Lymphs
 Bili, Delta
 FM_Monocytes (Fluid)

MPV
 Bili, Total
 Bilirubin (Urine)

PT
Appendix D

The number of shared alerts (and their subtypes) that were evaluated by the reviewers for the different amin alert parameter ranges. The
total number of alerts is 240.
Alert parameter (amin)
 Number of lab alerts
 Number of med alerts
 Number of all alerts
(0, 0.001]
 12
 12
 24

(0.001, 0.0025]
 10
 18
 28

(0.0025, 0.005]
 9
 15
 24

(0.005, 0.01]
 9
 22
 31

(0.01, 0.015]
 5
 23
 28

(0.015, 0.025]
 6
 17
 23

(0.025, 0.04]
 10
 18
 28

(0.04, 0.06]
 8
 14
 22

(0.06, 0.08]
 5
 9
 14

(0.08, 0.1]
 1
 14
 15

>0.1
 0
 3
 3
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Appendix E

Pairwise Cohen’s kappa statistics for the reviewers in the six
groups. Briefly, with three reviewers in each group we can calcu-
late three different kappa scores. The scores in the table are
ordered with the minimum and maximum kappa scores per group
shown on the left and right respectively.
Group id
 Minimum
 Maximum
1
 �0.0417
 0.1071
 0.3204

2
 0.3407
 0.3407
 0.5604

3
 0.0500
 0.1688
 0.2500

4
 0.2947
 0.4074
 0.4217

5
 �0.2276
 �0.2178
 0.0074

6
 0.2147
 0.2947
 0.3401
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